References


1.      He, Y., et al., A reporter for noninvasively monitoring gene expression and plant transformation. Hortic Res, 2020. 7(1): p. 152.

2.      Deng, Y., et al., A betaxanthin-based visible and fluorescent reporter for monitoring plant transformation. The Crop Journal, 2023. 11(2): p. 666-671.

3.      Babaei, M., et al., Combinatorial engineering of betalain biosynthesis pathway in yeast Saccharomyces cerevisiae. Biotechnol Biofuels Bioprod, 2023. 16(1): p. 128.

4.      Ma, L., et al., Heterologous Expression of Platycodon grandiflorus PgF3'5'H Modifies Flower Color Pigmentation in Tobacco. Genes (Basel), 2023. 14(10).

5.      Yu, L., et al., Genome-Wide Tissue-Specific Genes Identification for Novel Tissue-Specific Promoters Discovery in Soybean. Genes (Basel), 2023. 14(6).

6.      Brooks, E.G., et al., Plant Promoters and Terminators for High-Precision Bioengineering. BioDesign Research, 2023. 5: p. 0013.

7.      Xiao, Y.-L., et al., High throughput generation of promoter reporter (GFP) transgenic lines of low expressing genes in Arabidopsis and analysis of their expression patterns. Plant Methods, 2010. 6(1): p. 18.

8.      Cao, Y., et al., ZmDWF1 regulates leaf angle in maize. Plant Sci, 2022. 325: p. 111459.

9.      Duan, H., et al., Genetic dissection of internode length confers improvement for ideal plant architecture in maize. Plant J, 2025. 121(3): p. e17245.

10.    Schneider, H.M., et al., Genetic control of root architectural plasticity in maize. J Exp Bot, 2020. 71(10): p. 3185-3197.

11.    Wu, B., et al., Genome-Wide Association Study of Root System Architecture in Maize. Genes (Basel), 2022. 13(2).

12.    Feng, X., et al., ABA-inducible DEEPER ROOTING 1 improves adaptation of maize to water deficiency. Plant Biotechnol J, 2022. 20(11): p. 2077-2088.

13.    Zhan, A., H. Schneider, and J.P. Lynch, Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize  Plant Physiology, 2015. 168(4): p. 1603-1615.

14.    Zhan, A. and J.P. Lynch, Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany, 2015. 66(7): p. 2055-2065.

15.    Postma, J.A., A. Dathe, and J.P. Lynch, The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability      Plant Physiology, 2014. 166(2): p. 590-602.

16.    Jia, X., P. Liu, and J.P. Lynch, Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. Journal of Experimental Botany, 2018. 69(20): p. 4961-4970.

17.    Robinson, D., et al., Root-shoot growth responses during interspecific competition quantified using allometric modelling. Ann Bot, 2010. 106(6): p. 921-6.

18.    David Kottelenberg, J.E., Niels Anten, Lammert Bastiaans, The impact of weeds on performance of cereal-legume intercropping systems. Research Square, 2025.

19.    Khan, Z., et al., Push—pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. International Journal of Agricultural Sustainability, 2011. 9(1): p. 162-170.

20.    Cook, S.M., Z.R. Khan, and J.A. Pickett, The use of push-pull strategies in integrated pest management. Annu Rev Entomol, 2007. 52: p. 375-400.

21.    Köllner, T.G., et al., A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell, 2008. 20(2): p. 482-94.

22.    Degenhardt, J., et al., Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 2003. 14(2): p. 169-176.

23.    Lowe, K., et al., Morphogenic Regulators Baby boom and Wuschel Improve Monocot Transformation. The Plant Cell, 2016. 28(9): p. 1998-2015.

24.    Debernardi, J.M., et al., A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020. 38(11): p. 1274-1279.

25.    Wang, K., et al., Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J, 2017. 15(5): p. 614-623.

26.    Van Eck, J., P. Keen, and M. Tjahjadi, Agrobacterium tumefaciens-Mediated Transformation of Tomato. Methods Mol Biol, 2019. 1864: p. 225-234.

27.    Ruiz, K.B., et al., Quinoa – a Model Crop for Understanding Salt-tolerance Mechanisms in Halophytes. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2016. 150(2): p. 357-371.

28.    Olanrewaju, O.S., B.R. Glick, and O.O. Babalola, Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon, 2024. 10(23): p. e40517.

29.    Compant, S., et al., Harnessing the plant microbiome for sustainable crop production. Nature Reviews Microbiology, 2025. 23(1): p. 9-23.

30.    Yu, P., et al., Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants, 2021. 7(4): p. 481-499.

31.    Emmenegger, B., et al., Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning. Nature Communications, 2023. 14(1): p. 7983.

 

 

Wird geladen